skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Huan, Xun"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Diagnosing lithium-ion battery health and predicting future degradation is essential for driving design improvements in the laboratory and ensuring safe and reliable operation over a product’s expected lifetime. However, accurate battery health diagnostics and prognostics is challenging due to the unavoidable influence of cell-to-cell manufacturing variability and time-varying operating circumstances experienced in the field. Machine learning approaches informed by simulation, experiment, and field data show enormous promise to predict the evolution of battery health with use; however, until recently, the research community has focused on deterministic modeling methods, largely ignoring the cell-to-cell performance and aging variability inherent to all batteries. To truly make informed decisions regarding battery design in the lab or control strategies for the field, it is critical to characterize the uncertainty in a model’s predictions. After providing an overview of lithium-ion battery degradation, this paper reviews the current state-of-the-art probabilistic machine learning models for health diagnostics and prognostics. Details of the various methods, their advantages, and limitations are discussed in detail with a primary focus on probabilistic machine learning and uncertainty quantification. Last, future trends and opportunities for research and development are discussed. 
    more » « less
  2. Bayesian inference allows the transparent communication and systematic updating of model uncertainty as new data become available. When applied to material flow analysis (MFA), however, Bayesian inference is undermined by the difficulty of defining proper priors for the MFA parameters and quantifying the noise in the collected data. We start to address these issues by first deriving and implementing an expert elicitation procedure suitable for generating MFA parameter priors. Second, we propose to learn the data noise concurrent with the parametric uncertainty. These methods are demonstrated using a case study on the 2012 US steel flow. Eight experts are interviewed to elicit distributions on steel flow uncertainty from raw materials to intermediate goods. The experts’ distributions are combined and weighted according to the expertise demonstrated in response to seeding questions. These aggregated distributions form our model parameters’ informative priors. Sensible, weakly informative priors are adopted for learning the data noise. Bayesian inference is then performed to update the parametric and data noise uncertainty given MFA data collected from the United States Geological Survey and the World Steel Association. The results show a reduction in MFA parametric uncertainty when incorporating the collected data. Only a modest reduction in data noise uncertainty was observed using 2012 data; however, greater reductions were achieved when using data from multiple years in the inference. These methods generate transparent MFA and data noise uncertainties learned from data rather than pre-assumed data noise levels, providing a more robust basis for decision-making that affects the system. 
    more » « less
  3. Informed decision-making for sustainable manufacturing requires accurate manufacturing process environmental impact models with uncertainty quantification (UQ). For emerging manufacturing technologies, there is often insufficient process data available to derive accurate data-driven models. This paper explores an alternative mechanistic modeling approach using easy-to-access data from a given machine to perform Bayesian inference and reduce the uncertainty of model parameters. First, we derive mechanistic models of the cumulative energy demand (CED) for making aluminum (AlSi10) and nylon (PA12) parts using laser powder bed fusion (L-PBF). Initial parametric uncertainty is assigned to the model inputs informed by literature reviews and interviews with industry experts. Second, we identify the most critical sources of uncertainty using variance-based global sensitivity analyses; therefore, reducing the dimension of the problem. For metal and polymer L-PBF, critical uncertainty is related to the adiabatic efficiency of the process (a measure of the efficiency with which the laser energy is used to fuse the powder) and the recoating time per layer between laser scans. Data pertinent to both of these parameters include the part geometry (height and volume) and total build time. Between three and eight data points on part geometry and build time were collected on two different L-PBF machines and Bayesian inference was performed to reduce the uncertainty of the adiabatic efficiency and recoating time per layer on each machine. This approach was validated by subsequently taking direct parameter measurements on these machines during operation. The delivered electricity uncertainty is reduced by 40-70% after performing inference, highlighting the potential to construct accurate energy and environmental impact models of manufacturing processes using small easy-to-access datasets without interfering with the operations of the manufacturing facility. 
    more » « less
  4. Abstract Organic redox-active molecules are attractive as redox-flow battery (RFB) reactants because of their low anticipated costs and widely tunable properties. Unfortunately, many lab-scale flow cells experience rapid material degradation (from chemical and electrochemical decay mechanisms) and capacity fade during cycling (>0.1%/day) hindering their commercial deployment. In this work, we combine ultraviolet-visible spectrophotometry and statistical inference techniques to elucidate the Michael attack decay mechanism for 4,5-dihydroxy-1,3-benzenedisulfonic acid (BQDS), a once-promising positive electrolyte reactant for aqueous organic redox-flow batteries. We use Bayesian inference and multivariate curve resolution on the spectroscopic data to derive uncertainty-quantified reaction orders and rates for Michael attack, estimate the spectra of intermediate species and establish a quantitative connection between molecular decay and capacity fade. Our work illustrates the promise of using statistical inference to elucidate chemical and electrochemical mechanisms of capacity fade in organic redox-flow battery together with uncertainty quantification, in flow cell-based electrochemical systems. 
    more » « less
  5. Abstract Forecasting the arrival time of Earth‐directed coronal mass ejections (CMEs) via physics‐based simulations is an essential but challenging task in space weather research due to the complexity of the underlying physics and limited remote and in situ observations of these events. Data assimilation techniques can assist in constraining free model parameters and reduce the uncertainty in subsequent model predictions. In this study, we show that CME simulations conducted with the Space Weather Modeling Framework (SWMF) can be assimilated with SOHO LASCO white‐light (WL) observations and solar wind observations at L1 prior to the CME eruption to improve the prediction of CME arrival time. The L1 observations are used to constrain the model of the solar wind background into which the CME is launched. Average speed of CME shock front over propagation angles are extracted from both synthetic WL images from the Alfvén Wave Solar atmosphere Model (AWSoM) and the WL observations. We observe a strong rank correlation between the average WL speed and CME arrival time, with the Spearman's rank correlation coefficients larger than 0.90 for three events occurring during different phases of the solar cycle. This enables us to develop a Bayesian framework to filter ensemble simulations using WL observations, which is found to reduce the mean absolute error of CME arrival time prediction from about 13.4 to 5.1 hr. The results show the potential of assimilating readily available L1 and WL observations within hours of the CME eruption to construct optimal ensembles of Sun‐to‐Earth CME simulations. 
    more » « less
  6. Abstract Modeling the impact of space weather events such as coronal mass ejections (CMEs) is crucial to protecting critical infrastructure. The Space Weather Modeling Framework is a state‐of‐the‐art framework that offers full Sun‐to‐Earth simulations by computing the background solar wind, CME propagation, and magnetospheric impact. However, reliable long‐term predictions of CME events require uncertainty quantification (UQ) and data assimilation. We take the first steps by performing global sensitivity analysis (GSA) and UQ for background solar wind simulations produced by the Alfvén Wave Solar atmosphere Model (AWSoM) for two Carrington rotations: CR2152 (solar maximum) and CR2208 (solar minimum). We conduct GSA by computing Sobol' indices that quantify contributions from model parameter uncertainty to the variance of solar wind speed and density at 1 au, both crucial quantities for CME propagation and strength. Sobol' indices also allow us to rank and retain only the most important parameters, which aids in the construction of smaller ensembles for the reduced‐dimension parameter space. We present an efficient procedure for computing the Sobol' indices using polynomial chaos expansion surrogates and space‐filling designs. The PCEs further enable inexpensive forward UQ. Overall, we identify three important model parameters: the multiplicative factor applied to the magnetogram, Poynting flux per magnetic field strength constant used at the inner boundary, and the coefficient of the perpendicular correlation length in the turbulent cascade model in AWSoM. 
    more » « less